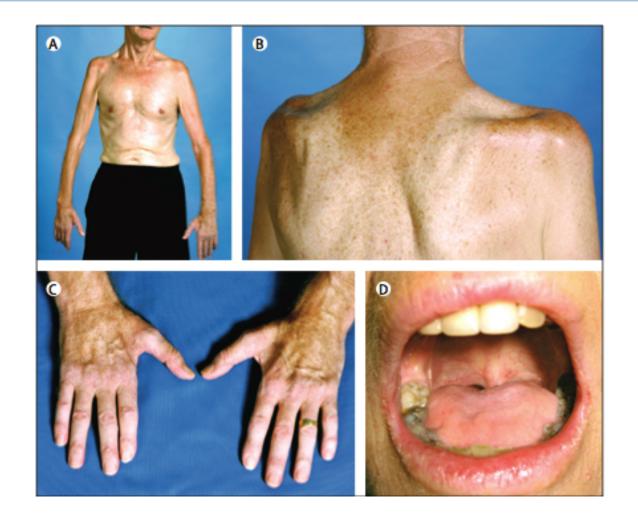
THE PALLIATION OF AMYOTROPHIC LATERAL SCLEROSIS

Objectives

- Review the clinical features, epidemiology, pathophysiology, and prognostic factors associated with ALS.
- Discuss the management of ALS throughout disease progression.
- 3. Consider the end-of-life care for the ALS patient.


Amyotrophic Lateral Sclerosis (ALS)

- □ First described by Charcot in 1874:
 - Clinical observations: atrophic muscular weakness (amyotrophy),
 spasticity
 - Pathological findings: hardening of the lateral columns of the spinal cord (lateral sclerosis), lesions of the anterior horn
- Neurological deterioration involving the corticospinal tract, brainstem, and anterior horn cells
 - Leads to limb paralysis, dysarthria, dysphagia, and respiratory failure
- Median survival of 3 years
 - Up to 10% of patients survive for more than 8 years
 - With mechanical ventilation, survival can be 15 years or greater

ALS: Clinical Features

- Disease phenotype often is classified by site of onset:
 - □ Limb symptoms: 65%
 - Bulbar dysfunction: 30%
 - Respiratory: 5%
- Extraocular and sphincter muscles spared
- Sensory neurons intact

ALS: Clinical Features

Kiernan, M.C. et al. 2011Lancet 377: 942-955

ALS: Associated Cognitive Dysfunction

- □ Frequent feature of ALS → executive and behavioural impairment in up to 60% of patients
- Frontotemporal dementia (FTD) occurs in up to 15%
 - Personality change
 - Irritability
 - Poor insight
 - Pervasive deficits on frontal executive tests
- Mild form of executive impairment in approximately 20%
 - Impaired judgement, impulsivity
- Cognitive or behavioural changes may precede or follow motor symptoms
- No definitive screening test
- Concern of decision-making capacity as disease progresses

ALS: Epidemiology

- □ Incidence: 2-3 people per 100 000 → most common degenerative disorder of the motoneuronal system in adults
- Caucasians more frequently affected than other ethnic groups
- Men more than women (1.2-1.5:1)
- □ Risk peaks between ages of 50-75 years, then declines
- Not increasing
- Both sporadic and inherited forms of the disease
 - 10% due to inherited gene mutations

ALS: Etiology

- Currently unknown geographic and occupational clusters, ? environmental factors
- Possible mechanisms:
 - Mitochondrial dysfunction
 - Protein aggregation
 - Free radical generation
 - Excitotoxicity
 - Inflammation and apoptosis
- Multifactorial contributions from multiple genes and environmental exposures

ALS: Diagnosis

- Up to 14 months from onset of symptoms until diagnosis initial broad differential diagnosis
- Based primarily on clinical exam
- No definitive diagnostic test may involve:
 - Laboratory testing
 - Electromyography (fasciculation, denervation discharges, polyphasic units)
 - Genetic testing
 - Neuroimaging (MRI)
- □ El Escorial criteria in 1994 (World Federation of Neurology) → multiple revisions
- Definite diagnosis requires:
 - LMN degeneration on clinical, electrophysiological, or neuropathological exam
 - UMN degeneration on clinical exam
 - Progression of motor syndrome within a region or to other regions
 - Absence of evidence of other disease processes that may explain the symptoms

ALS Treatment: Riluzole

- Only drug approved by the FDA
- First developed as an antiepileptic drug
- Inhibit the synaptic release of glutamate, but mechanism in ALS is unknown
- Common side effects: fatigue, somnolence, nausea, diarrhea, dizziness
- Miller, R.G., et al. 2012 Cochrane Database of Systematic Review, Issue 3:
 - 4 RCTs involving 1477 ALS patients
 - 100 mg daily: median survival benefit of 2-3 months
 - Reasonably safe, very modest effect, expensive
- Consensus: all affected patients should be offered riluzole

ALS: Prognostic Factors

POSITIVE

- Diagnostic delay
- Limb-onset
- Psychological wellbeing
- Marital status
- Interdisciplinary care

NEGATIVE

- Older age
- Respiratory- or bulbaronset
- Presence of FTD
- Low BMI and weight loss
- ** lower predicted forced vital capacity (FVC)

ALS: Practice Guidelines

- Published by the American Academy of Neurology (AAN) and European ALS Consortium (EALSC)
- Evidence-based guidelines mostly level B and C evidence (small numbers, lack of RCTs)
 - Expert consensus
- Recommendations:
 - Delivery of diagnosis
 - Use of multidisciplinary care team
 - Use of riluzole
 - Specific symptom management
 - End-of-life care

SYMPTOM MANAGEMENT

ALS: Multidisciplinary Care Team

- Neurologist
- Specialized nurse
- Physical therapist
- Occupational therapist
- Respirologist
- Respiratory therapist
- Speech pathologist
- Gastroenterologist
- Dietician
- Social worker
- Psychologist
- Spiritual Care
- Family physician
- Palliative Medicine physician

ALS: Symptom Management

- Sialorrhea: socially disabling, impaired handling of secretions
 - Medications: antimuscarinic agents, TCA
 - Home suction device
 - Botulinum toxin, radiotherapy
- Bronchial secretions:
 - Mucolytics
 - Manual assisted cough
 - Suction, insufflator-exsufflator
- Pseudobulbar affect: pathological weeping/laughing/ yawning, occurs in 20-50%, not a mood disorder (brain lesion)
 - Antidepressants, dextromethorphan/quinidine

ALS: Symptom Management

- Impaired communication:
 - Alphabet board, computerized systems, infrared eye movements, voice amplification systems
- Cramps:
 - Massage, PT, exercise, hydrotherapy
 - Medications: quinine, anticonvulsants, benzodiazepenes → efficacy in ALS?
- Spasticity:
 - PT, hydrotherapy, ultrasound, TENS
 - Medications: baclofen, benzodiapenes, dantrolene, tizanidine, anticonvulsants → Efficacy in ALS?
- Depression/anxiety/insomnia: occur frequently at all stages of disease
 - Medications: SSRIs, TCAs, benzodiazepines, zopiclone, Benadryl

ALS: Symptom Management

- DVT prophylaxis: increased risk in paralysis, but incidence in ALS is unknown
 - Insufficient evidence to recommend prophylaxis
- □ Pain: occurs frequently (up to 80%), may involve neuropathic component, typically increases with disease progression → atrophy affecting bones/joints, muscle contractures, immobility
 - Medications: according to WHO analgesic ladder
 - Brettschneider, J. et al. 2010 Cochrane Database of Systematic Reviews Issue 11:
 - No RCTs on drug therapy for pain in ALS

ALS: Management of Nutrition

- Functional consequences of bulbar symptoms: choking, aspiration, weight loss, dehydration
- Hypermetabolic state in 50-60% of patients → independent of increased WOB,? Mitochondrial dysfunction
- Social impact
- Interventions:
 - Texture modification
 - Nutritional supplements
 - Modified feeding aids
 - Percutaneous endoscopic gastrostomy tube (PEG) or radiologically-inserted gastrostomy (RIG)

ALS: Feeding via PEG Tube

- Recommended in patients with difficulty maintaining good nutrition
- Increased mortality if placed once the FVC is less than 50% predicted
 - □ Procedure: 1.8%
 - 24 hour: 3.6%
 - 30-day: 11.5%
- Associated complications:
 - Laryngospasm
 - Localized infection
 - Gastric hemorrhage
 - Failure to place PEG due to technical difficulties
 - Death due to respiratory arrest

^{*} RIG may be an alternative if placed in advanced stage of disease

ALS: Feeding via PEG TUBE

- Probably effective in stabilizing body weight
- Currently, no evidence of survival benefit
- Lou, J. et al. 2010 Amyotroph Lateral Scler 11: 116-121
 - 412 ALS patients enrolled in clinical trial (minocycline)
 - Analyzed how PEG affects QoL → used McGill Quality of Life Scale to assess 52 patients with PEGs placed during the study period
 - Rate of decline on QoL scale slowed after initiation of PEG
 - Reasons for suspected improvement in QoL unknown
- Impact on quality of life:
 - Reduces risk of rapid weight loss
 - Avoids dehydration
 - May reduce anxiety and social isolation associated with prolonged meal times

Management of Respiratory Symptoms

- Respiratory muscle weakness: inability of respiratory muscles to generate normal levels of pressure and airflow during inspiration and expiration
- Respiratory insufficiency: inadequate pulmonary ventilation to the point where gas exchange is impaired, resulting in carbon dioxide retention, hypoxemia, and frank respiratory failure
- Respiratory failure (with or without pneumonia) is the most common cause of death in ALS patients

Symptoms: Respiratory Muscle Weakness

- Dyspnea on exertion
- Orthopnea
- Nightmares and fragmented sleep
- Morning headaches
- Daytime somnolence
- Cough impairment
- Lower respiratory tract infection

Noninvasive Positive Pressure Ventilation (NIPPV)

- Provided via BiPAP -> enough support to offload work of breathing
- Recommended by the AAN, EALSC, and the American College of Chest Physicians
 - Not widely used in USA and Europe
 - Poor compliance in patients with bulbar symptoms and FTD
- □ No guidelines in literature for initiation of NIPPV → respiratory symptoms and/or evidence of respiratory muscle weakness (FVC < 50% pred.)</p>
 - Polysomnography plays no significant role in determining when to start
 - No RCTs that address whether initiating before the onset of symptoms or hypercapnia prolongs time to respiratory failure or death
- Debate about which test optimally detects impending respiratory muscle insufficiency:
 - Forced vital capacity (FVC)
 - Maximum inspiratory and expiratory pressure (MIP/MEP)
 - Maximum sniff nasal pressure (SNIP)

ALS: RCTs for NIPPV

- Radunovic, A. et al. 2009 Cochrane Database of Systematic Reviews Issue 4:
 - Examine the efficacy of mechanical ventilation in improving survival, on disease progression, and quality of life in ALS
 - Only one study judged to be of adequate methodological quality no meta-analysis

ALS: RCT for NIPPV

- □ Bourke, S.C. et al. 2006 Lancet Neurol 5: 140-147:
 - Effect of NIPPV on quality of life and survival
 - 92 patients at a single centre were assessed every 2 months → randomised to NIPPV (n=22) or standard care (n=19) when they developed either orthopnea with MIP less than 60% predicted or symptomatic hypercapnia
 - QoL measured with Mental Component Summary and Sleep Apnea Quality-of-life Index → time maintained above 75% of baseline and mean improvement

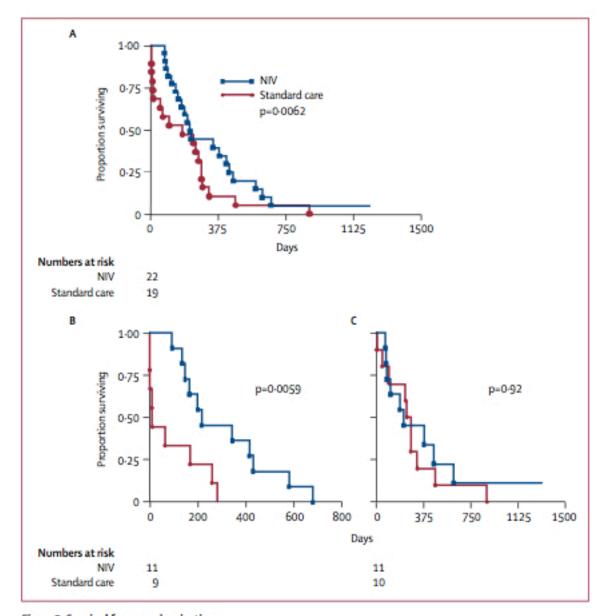


Figure 2: Survival from randomisation

A: all patients; B: patients with normal or moderately impaired bulbar function; C: patients with severe bulbar impairment.

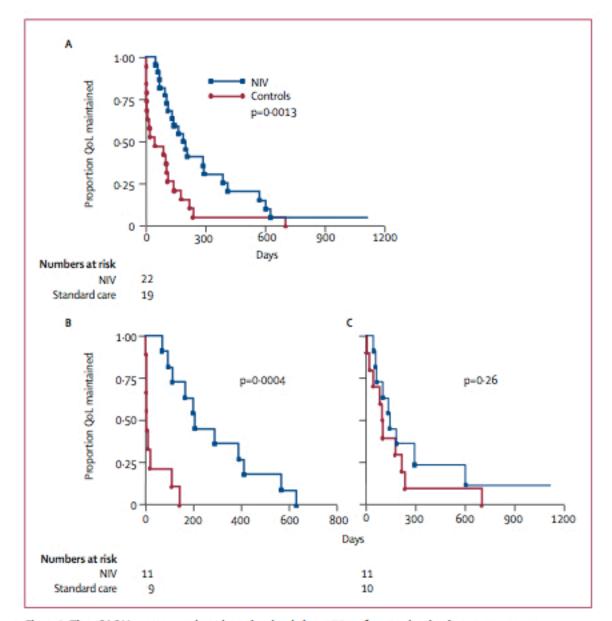


Figure 3: Time SAQLI symptoms domain maintained above 75% of prerandomisation assessment

A: all patients; B: patients with normal or moderately impaired bulbar function; C: patients with severe bulbar impairment. QoL=quality of life.

ALS: RCT for NIPPV

- □ Bourke, S.C. *et al.* 2006 Lancet Neurol 5: 140-147:
 - NIPPV improved QoL and survival (median of 205 days) in ALS patients without severe bulbar dysfunction
 - Survival benefit greater than available drug treatment
 - Reason for lack of survival benefit in patients with severe bulbar function unclear → NIPPV may not be effective in this subgroup or may be related to intolerance
 - Cannot comment on use of NIPPV in this subgroup

Long Term Mechanical Ventilation (LTMV)

- □ Generally considered for symptoms of respiratory failure: intolerance of NIPPV or failure of NIPPV → Often initiated in emergent situation
 - Secures airway
 - Prevents/reduces aspiration pneumonia
 - Prolongs life
- Patient factors associated with tracheostomy:
 - Male gender
 - Younger
 - Higher income
 - Young children
 - Belief in future cure
- Varying tracheostomy rate between countries:
 - □ USA: 3%
 - Germany: 3%
 - United Kingdom: 0%
 - Japan: 27-45%

ALS: LTMV

- Median survival: 12-37 months
- Most common cause of death: respiratory tract infection
- Controversial:
 - 50-70% of patients with tracheostomy will have minimal ability to communicate or locked-in
 - Expensive
 - Increased caregiver burden
 - Very limited data, re: survival, QoL

ALS: Respiratory Symptoms

- Dyspnea: opioids, benzodiazepines
- Diaphragmatic pacing stimulators: intramuscular implantation of electrodes, with goal of postponing need for invasive mechanical ventilation
 - □ Remains controversial → no evidence for ALS patients
- Supplemental oxygen therapy may suppress respiratory drive, worsen hypoventilation, cause carbon dioxide retention, and lead to respiratory arrest
 - Can be used for concomitant cardiac or respiratory disease
 - Can be used as comfort measure in terminal stage of disease

END-OF-LIFE CARE

ALS: End-of-Life Care

- □ Currently unclear from international guidelines when Palliative Care should become involved in patient care → suggestion of early on in disease
 - To develop rapport
 - To introduce end-of-life planning prior to onset significant cognitive or communication issues
- Suggested triggers for end-of-life discussions:
 - Patient initiated
 - Presence of severe psychological, social, or spiritual distress or suffering
 - Presence of pain requiring high-dose analgesic medications
 - Dysphagia requiring feeding tube
 - Presence of dyspnea, symptoms of hypoventilation, or FVC <50%
 - Loss of body function in two regions (bulbar, arms, or legs)
- UK studies:
 - 30-75 % of PC/hospice units provide ALS care
 - Only 8% involved from time of diagnosis

ALS: End-of-Life Management

- Palliative Medicine consultant generally involved only during terminal phase of disease
 - Hospice/PC unit admission
 - Withdrawal of LTMV
- Majority of patients die at home may have difficulty accessing community PC programs
- Common barriers to palliative care intervention:
 - Unpredictable non-cancer disease trajectory
 - Lack of defined referral criteria for non-malignant conditions
 - Lack of non-cancer disease specific expertise
 - Limited resources

ALS: End-of-Life Management

- Anxiety surrounding final stages of disease
 dyspnea, choking, and pain
- Mandler, R.N. et al. 2001 Amytroph Lateral Scler Other Motor Neuron Disord 2: 203-208:
 - Observational registry of 1014 American and Canadian ALS patients who died during 4 year period
 - Questionnaire filled out by caregiver or family member
 - Mean age at death: 62 years
 - □ 64.1% of patients died at home, 20.7% in hospital, 7.7% in skilled nursing facility, 6.9% in hospice
 - >90% of patients were followed at a tertiary care centre with ALS expertise and multidisciplinary approach

ALS: End-of-Life Management

- Mandler, R.N. et al. 2001 Amytroph Lateral Scler Other Motor Neuron Disord 2: 203-208:
 - 88.9% had advance care directives in place
 - 90.7% of patients died peacefully
 - 9.3% with distress during dying process:
 - Breathing difficulties: 82.1%
 - Fear/anxiety: 55.2%
 - Pain: 23.9%
 - Insomnia: 14.9%
 - Choking: 14.9%
 - Palliative care relatively well-managed and interventions effective

Conclusions

- Complex, progressive disease with very limited treatment options
 - No evidence of change in median survival
- Despite attempts to establish evidence-based guidelines, very few well-designed trials to guide symptom management reliant on expert consensus and clinical experience
- - Significant burden of disease
 - Difficult decisions to be made
- Likely to be controversy in the near future as Canada contemplates euthanasia and physician-assisted suicide