THE PALLIATION OF AMYOTROPHIC LATERAL SCLEROSIS

Fiona Punter MD, PhD, FRCPC
1. Review the clinical features, epidemiology, pathophysiology, and prognostic factors associated with ALS.

2. Discuss the management of ALS throughout disease progression.

3. Consider the end-of-life care for the ALS patient.
Amyotrophic Lateral Sclerosis (ALS)

- First described by Charcot in 1874:
 - Clinical observations: atrophic muscular weakness (amyotrophy), spasticity
 - Pathological findings: hardening of the lateral columns of the spinal cord (lateral sclerosis), lesions of the anterior horn

- Neurological deterioration involving the corticospinal tract, brainstem, and anterior horn cells
 - Leads to limb paralysis, dysarthria, dysphagia, and respiratory failure

- Median survival of 3 years
 - Up to 10% of patients survive for more than 8 years
 - With mechanical ventilation, survival can be 15 years or greater
ALS: Clinical Features

- Disease phenotype often is classified by site of onset:
 - Limb symptoms: 65%
 - Bulbar dysfunction: 30%
 - Respiratory: 5%
- Extraocular and sphincter muscles spared
- Sensory neurons intact
ALS: Clinical Features

ALS: Associated Cognitive Dysfunction

- Frequent feature of ALS ⇒ executive and behavioural impairment in up to 60% of patients
- Frontotemporal dementia (FTD) occurs in up to 15%
 - Personality change
 - Irritability
 - Poor insight
 - Pervasive deficits on frontal executive tests
- Mild form of executive impairment in approximately 20%
 - Impaired judgement, impulsivity
- Cognitive or behavioural changes may precede or follow motor symptoms
- No definitive screening test
- Concern of decision-making capacity as disease progresses
ALS: Epidemiology

- Incidence: 2-3 people per 100,000 → most common degenerative disorder of the motoneuronal system in adults
- Caucasians more frequently affected than other ethnic groups
- Men more than women (1.2-1.5:1)
- Risk peaks between ages of 50-75 years, then declines
- Not increasing
- Both sporadic and inherited forms of the disease
 - 10% due to inherited gene mutations
ALS: Etiology

- Currently unknown ➔ geographic and occupational clusters, ? environmental factors
- Possible mechanisms:
 - Mitochondrial dysfunction
 - Protein aggregation
 - Free radical generation
 - Excitotoxicity
 - Inflammation and apoptosis
- Multifactorial ➔ contributions from multiple genes and environmental exposures
ALS: Diagnosis

- Up to 14 months from onset of symptoms until diagnosis ➔ initial broad differential diagnosis
- Based primarily on clinical exam
- No definitive diagnostic test ➔ may involve:
 - Laboratory testing
 - Electromyography (fasciculation, denervation discharges, polyphasic units)
 - Genetic testing
 - Neuroimaging (MRI)
- El Escorial criteria in 1994 (World Federation of Neurology) ➔ multiple revisions
- Definite diagnosis requires:
 - LMN degeneration on clinical, electrophysiological, or neuropathological exam
 - UMN degeneration on clinical exam
 - Progression of motor syndrome within a region or to other regions
 - Absence of evidence of other disease processes that may explain the symptoms
ALS Treatment: Riluzole

- Only drug approved by the FDA
- First developed as an antiepileptic drug
- Inhibit the synaptic release of glutamate, but mechanism in ALS is unknown
- Common side effects: fatigue, somnolence, nausea, diarrhea, dizziness
 - 4 RCTs involving 1477 ALS patients
 - 100 mg daily: median survival benefit of 2-3 months
 - Reasonably safe, very modest effect, expensive
- Consensus: all affected patients should be offered riluzole
ALS: Prognostic Factors

POSITIVE
- Diagnostic delay
- Limb-onset
- Psychological well-being
- Marital status
- Interdisciplinary care

NEGATIVE
- Older age
- Respiratory- or bulbar-onset
- Presence of FTD
- Low BMI and weight loss
- ** lower predicted forced vital capacity (FVC)**
ALS: Practice Guidelines

- Published by the American Academy of Neurology (AAN) and European ALS Consortium (EALSC)
- Evidence-based guidelines mostly level B and C evidence (small numbers, lack of RCTs)
 - Expert consensus
- Recommendations:
 - Delivery of diagnosis
 - Use of multidisciplinary care team
 - Use of riluzole
 - Specific symptom management
 - End-of-life care
SYMPTOM MANAGEMENT
ALS: Multidisciplinary Care Team

- Neurologist
- Specialized nurse
- Physical therapist
- Occupational therapist
- Respirologist
- Respiratory therapist
- Speech pathologist
- Gastroenterologist
- Dietician
- Social worker
- Psychologist
- Spiritual Care
- Family physician
- Palliative Medicine physician
ALS: Symptom Management

- Sialorrhea: socially disabling, impaired handling of secretions
 - Medications: antimuscarinic agents, TCA
 - Home suction device
 - Botulinum toxin, radiotherapy

- Bronchial secretions:
 - Mucolytics
 - Manual assisted cough
 - Suction, insufflator-exsufflator

- Pseudobulbar affect: pathological weeping/laughing/yawning, occurs in 20-50%, not a mood disorder (brain lesion)
 - Antidepressants, dextromethorphan/quinidine
ALS: Symptom Management

- Impaired communication:
 - Alphabet board, computerized systems, infrared eye movements, voice amplification systems

- Cramps:
 - Massage, PT, exercise, hydrotherapy
 - Medications: quinine, anticonvulsants, benzodiazepenes ➔ efficacy in ALS?

- Spasticity:
 - PT, hydrotherapy, ultrasound, TENS
 - Medications: baclofen, benzodiazepines, dantrolene, tizanidine, anticonvulsants ➔ Efficacy in ALS?

- Depression/anxiety/insomnia: occur frequently at all stages of disease
 - Medications: SSRIs, TCAs, benzodiazepines, zopiclone, Benadryl
ALS: Symptom Management

- DVT prophylaxis: increased risk in paralysis, but incidence in ALS is unknown
 - Insufficient evidence to recommend prophylaxis

- Pain: occurs frequently (up to 80%), may involve neuropathic component, typically increases with disease progression → atrophy affecting bones/joints, muscle contractures, immobility
 - Medications: according to WHO analgesic ladder
 - Brettschneider, J. et al. 2010 Cochrane Database of Systematic Reviews Issue 11:
 - No RCTs on drug therapy for pain in ALS
ALS: Management of Nutrition

- Functional consequences of bulbar symptoms: choking, aspiration, weight loss, dehydration
- Hypermetabolic state in 50-60% of patients → independent of increased WOB, ? Mitochondrial dysfunction
- Social impact
- Interventions:
 - Texture modification
 - Nutritional supplements
 - Modified feeding aids
 - Percutaneous endoscopic gastrostomy tube (PEG) or radiologically-inserted gastrostomy (RIG)
ALS: Feeding via PEG Tube

- Recommended in patients with difficulty maintaining good nutrition
- Increased mortality if placed once the FVC is less than 50% predicted
 - Procedure: 1.8%
 - 24 hour: 3.6%
 - 30-day: 11.5%
- Associated complications:
 - Laryngospasm
 - Localized infection
 - Gastric hemorrhage
 - Failure to place PEG due to technical difficulties
 - Death due to respiratory arrest

* RIG may be an alternative if placed in advanced stage of disease
ALS: Feeding via PEG TUBE

- Probably effective in stabilizing body weight
- Currently, no evidence of survival benefit
- Lou, J. et al. 2010 Amyotroph Lateral Scler 11: 116-121
 - 412 ALS patients enrolled in clinical trial (minocycline)
 - Analyzed how PEG affects QoL ➔ used McGill Quality of Life Scale to assess 52 patients with PEGs placed during the study period
 - Rate of decline on QoL scale slowed after initiation of PEG
 - Reasons for suspected improvement in QoL unknown

- Impact on quality of life:
 - Reduces risk of rapid weight loss
 - Avoids dehydration
 - May reduce anxiety and social isolation associated with prolonged meal times
Management of Respiratory Symptoms

- Respiratory muscle weakness: inability of respiratory muscles to generate normal levels of pressure and airflow during inspiration and expiration.
- Respiratory insufficiency: inadequate pulmonary ventilation to the point where gas exchange is impaired, resulting in carbon dioxide retention, hypoxemia, and frank respiratory failure.
- Respiratory failure (with or without pneumonia) is the most common cause of death in ALS patients.
Symptoms: Respiratory Muscle Weakness

- Dyspnea on exertion
- Orthopnea
- Nightmares and fragmented sleep
- Morning headaches
- Daytime somnolence
- Cough impairment
- Lower respiratory tract infection
Noninvasive Positive Pressure Ventilation (NIPPV)

- Provided via BiPAP → enough support to offload work of breathing
- Recommended by the AAN, EALSC, and the American College of Chest Physicians
 - Not widely used in USA and Europe
 - Poor compliance in patients with bulbar symptoms and FTD
- No guidelines in literature for initiation of NIPPV → respiratory symptoms and/or evidence of respiratory muscle weakness (FVC < 50% pred.)
 - Polysomnography plays no significant role in determining when to start
 - No RCTs that address whether initiating before the onset of symptoms or hypercapnia prolongs time to respiratory failure or death
- Debate about which test optimally detects impending respiratory muscle insufficiency:
 - Forced vital capacity (FVC)
 - Maximum inspiratory and expiratory pressure (MIP/MEP)
 - Maximum sniff nasal pressure (SNIP)
ALS: RCTs for NIPPV

Radunovic, A. et al. 2009 Cochrane Database of Systematic Reviews Issue 4:

- Examine the efficacy of mechanical ventilation in improving survival, on disease progression, and quality of life in ALS
- Only one study judged to be of adequate methodological quality → no meta-analysis
ALS: RCT for NIPPV

- Bourke, S.C. et al. 2006 Lancet Neurol 5: 140-147:
 - Effect of NIPPV on quality of life and survival
 - 92 patients at a single centre were assessed every 2 months ➔ randomised to NIPPV (n=22) or standard care (n=19) when they developed either orthopnea with MIP less than 60% predicted or symptomatic hypercapnia
 - QoL measured with Mental Component Summary and Sleep Apnea Quality-of-life Index ➔ time maintained above 75% of baseline and mean improvement
Figure 2: Survival from randomisation
A: all patients; B: patients with normal or moderately impaired bulbar function; C: patients with severe bulbar impairment.
Figure 3: Time SAQLI symptoms domain maintained above 75% of prerandomisation assessment
A: all patients; B: patients with normal or moderately impaired bulbar function; C: patients with severe bulbar impairment. QoL=quality of life.
ALS: RCT for NIPPV

- Bourke, S.C. et al. 2006 Lancet Neurol 5: 140-147:
 - NIPPV improved QoL and survival (median of 205 days) in ALS patients without severe bulbar dysfunction
 - Survival benefit greater than available drug treatment
 - Reason for lack of survival benefit in patients with severe bulbar function unclear → NIPPV may not be effective in this subgroup or may be related to intolerance

- Cannot comment on use of NIPPV in this subgroup
Long Term Mechanical Ventilation (LTMV)

- Generally considered for symptoms of respiratory failure: intolerance of NIPPV or failure of NIPPV ➔ Often initiated in emergent situation
 - Secures airway
 - Prevents/reduces aspiration pneumonia
 - Prolongs life
- Patient factors associated with tracheostomy:
 - Male gender
 - Younger
 - Higher income
 - Young children
 - Belief in future cure
- Varying tracheostomy rate between countries:
 - USA: 3%
 - Germany: 3%
 - United Kingdom: 0%
 - Japan: 27-45%
ALS: LTMV

- Median survival: 12-37 months
- Most common cause of death: respiratory tract infection
- Controversial:
 - 50-70% of patients with tracheostomy will have minimal ability to communicate or locked-in
 - Expensive
 - Increased caregiver burden
 - Very limited data, re: survival, QoL
ALS: Respiratory Symptoms

- Dyspnea: opioids, benzodiazepines
- Diaphragmatic pacing stimulators: intramuscular implantation of electrodes, with goal of postponing need for invasive mechanical ventilation
 - Remains controversial ➔ no evidence for ALS patients
- Supplemental oxygen therapy may suppress respiratory drive, worsen hypoventilation, cause carbon dioxide retention, and lead to respiratory arrest
 - Can be used for concomitant cardiac or respiratory disease
 - Can be used as comfort measure in terminal stage of disease
ALS: End-of-Life Care

- Currently unclear from international guidelines when Palliative Care should become involved in patient care ➔ suggestion of early on in disease
 - To develop rapport
 - To introduce end-of-life planning prior to onset significant cognitive or communication issues

- Suggested triggers for end-of-life discussions:
 - Patient initiated
 - Presence of severe psychological, social, or spiritual distress or suffering
 - Presence of pain requiring high-dose analgesic medications
 - Dysphagia requiring feeding tube
 - Presence of dyspnea, symptoms of hypoventilation, or FVC <50%
 - Loss of body function in two regions (bulbar, arms, or legs)

- UK studies:
 - 30-75 % of PC/hospice units provide ALS care
 - Only 8% involved from time of diagnosis
ALS: End-of-Life Management

- Palliative Medicine consultant generally involved only during terminal phase of disease
 - Hospice/PC unit admission
 - Withdrawal of LTMV
- Majority of patients die at home ➔ may have difficulty accessing community PC programs
- Common barriers to palliative care intervention:
 - Unpredictable non-cancer disease trajectory
 - Lack of defined referral criteria for non-malignant conditions
 - Lack of non-cancer disease specific expertise
 - Limited resources
ALS: End-of-Life Management

- Anxiety surrounding final stages of disease ➔ dyspnea, choking, and pain
- Mandler, R.N. et al. 2001 Amytroph Lateral Scler Other Motor Neuron Disord 2: 203-208:
 - Observational registry of 1014 American and Canadian ALS patients who died during 4 year period
 - Questionnaire filled out by caregiver or family member
 - Mean age at death: 62 years
 - 64.1% of patients died at home, 20.7% in hospital, 7.7% in skilled nursing facility, 6.9% in hospice
 - >90% of patients were followed at a tertiary care centre with ALS expertise and multidisciplinary approach
ALS: End-of-Life Management

- Mandler, R.N. et al. 2001 Amytroph Lateral Scler Other Motor Neuron Disord 2: 203-208:
 - 88.9% had advance care directives in place
 - 90.7% of patients died peacefully
 - 9.3% with distress during dying process:
 - Breathing difficulties: 82.1%
 - Fear/anxiety: 55.2%
 - Pain: 23.9%
 - Insomnia: 14.9%
 - Choking: 14.9%
 - Palliative care relatively well-managed and interventions effective
Conclusions

- Complex, progressive disease with very limited treatment options
 - No evidence of change in median survival
- Despite attempts to establish evidence-based guidelines, very few well-designed trials to guide symptom management ➔ reliant on expert consensus and clinical experience
- Ongoing loss of function, including cognition and communication ➔ early Palliative Care and end-of-life planning is essential
 - Significant burden of disease
 - Difficult decisions to be made
- Likely to be controversy in the near future as Canada contemplates euthanasia and physician-assisted suicide